

MS4 £4.00

GCE MARKING SCHEME

CHEMISTRY (NEW) AS/Advanced

SUMMER 2009

CH1

Section A

1.	(a)	(i)	Atomic number is the number of protons in the nucleus / in an element (e.g. 19 for potassium)	[1]
		(ii)	Isotopes of elements have the same number of protons but different number of neutrons (e.g. chlorine has two isotope ³⁵ Cl and ³⁷ Cl) / same atomic number but different mass num	es mber [1]
	(b)			
$1s$ $\uparrow\downarrow$	$2s$ $\uparrow\downarrow$	$\uparrow\downarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4s ↑
2.	(a)	(i)	Measure (the volume of) hydrogen produced (using a gas syringe) / (mass of) hydrogen lost at constant time intervals	[1]
		(ii)	Crush it into a powder / increase its surface area / heat it / s	stir it [1]
	<i>(b)</i>	2 g		[1]
3.	3 g / 2	A		[1]
4.	(a)			
frac mo with c	ction of lecules energy,	E	Higher temperature - peak of curv must be lower and to right	re
		I	energy E	
	(b)	ΔH	= (4 x 412) + 612 + 436 - ((6 x 412) + 348) = -124 kJ mol ⁻¹	[1] [1]

Total [10]

Section B

5.	<i>(a)</i>	(i)	Corre	ect plotting of 6 pe	points (Allow $\pm \frac{1}{2}$	∕₂ square)		[3]
		(ii)	In He outwo He ha He ou	e less shielding of eighs smaller nucl as greater effectiv uter electron close	outer electron (1) lear charge (1) / e nuclear charge (er to nucleus (1)	(1) /		
			(Acce	ept any two points	5)			[2]
		(iii)	Ne ha great	as greater nuclear er number of prot	charge / ons (in same orbit	tal)		[1]
		(iv)	N onl and ty repul remo unpai	y has unpaired 2p electrons, O has two unpair vo paired 2p electrons / N $1s^2 2s^2 2p^3$, O $1s^2 2s^2$ sion between the paired electrons makes it easies we one of the electrons / takes more energy to red electron (1)				(1), e [2]
	<i>(b)</i>	(i)		Pb	С	0		
				<u>77.5</u> 207	<u>4.50</u> 12	<u>18.0</u> 16		
				0.374	0.375	1.125	(1)	
				1	1	3		
				Formula	$\mathbf{a} = \mathbf{PbCO}_3\left(1\right)$			[2]
		(ii)	Ι	$M_{\rm r}$ Pb ₃ O ₄ = (3 x	x 207) + (4 x 16) =	= 685		[1]
			II	Moles PbO =	$\frac{134}{223} = 0.601$	(1)		
				Moles Pb ₃ O ₄ =	0.200	(1)		
				Mass $Pb_3O_4 = 1$	137 g	(1)		[3]
				or alternative				
				1338 g PbO giv	ves 1370 g Pb ₃ O ₄	(1)		
				1 g PbO gives	<u>1370</u> g Pb ₃ O ₄ 1388	(1)		
				134 g PbO give	es 137(.2) g Pb ₃ O ₄	4 (1)		

Total [14]

6.	(<i>a</i>)	(i)	It provide	es a new route		(1)	
			of lower	activation ener	зy	(1)	[2]
		(ii)	Heteroge	enous			[1]
		(iii)	I L (v le (z	ower temperat which would m ess energy cons quilibrium cou Accept any two	ures could be lean) increase sumption (1), ld be reached o points)	used (1) ed yield (1) / / lower pressure used (faster (1)	[1] /
			II N si	fore ammonia ince more (gas)	formed / equi) molecules o	ilibrium moves to righ n l.h.s. (1) nark)	t (1)
			()	increases rate o		liark)	[4]
			III E si th (S h	quilibrium mo ince removing ne mixture (1) Stops ammonia ydrogen 1 mar	ves to right / ammonia dec 1 from returni k)	more ammonia formed reases its concentration ng to nitrogen and	1 (1) n in [2]
		(iv)	Near a po good trar	ort / on the coa nsport links for	st for exporting product (1),	ng products (1), nearby workforce (1)	
			(Two val	id reasons with	nout one qual	ification 1 mark only)	[2]
	<i>(b)</i>	(i)	$2NH_3$ +	H ₂ SO ₄ —	→ (NH ₄	$)_2$ SO ₄	[1]
		(ii)	Ammoni lone pair	a accepts a pro of electrons / a	ton (from the ammonia neu	e acid) / ammonia has a tralises the acid	a [1]
		(iii)	% N =	28/132 ×	× 100 (1)		
		、 /	=	21.2%	(1)		[2]

Total [15]

7. (a) (i) Only changes between energy levels allowed /

electron falls from higher energy levels to lower energy levels (1)

Energy emitted related to frequency / E = hf / the difference between any twoenergy levels are fixed / energy levels are quantised (1) [2]

(ii)

- Labelling of any 3 horizontal lines (1) Transitions going to n = 2 (1)
- Red line from n = 3 to n = 2 (1)

(If all lines go to
$$n = 1$$
, accept red line from $n = 2$ to $n = 1$) [3]

(iii) Transition from n = 1 to $n = \infty$ [1]

(b) (i)
$$A_{\rm r} H = (1 \times 99.2) + (2 \times 0.8)$$
 (1)
 100
 $= 1.008$ (1) [2]

	(ii)	Some of the hydrogen molecules are split into atoms	[1]
(c)	(i)	Electron gun / source of electrons / heated filament	[1]
	(ii)	Electric field / charged plates / accelerator / collimator	[1]
	(iii)	To ensure a vacuum /	
		prevents collisions between sample and air molecules	[1]

(d)

Туре	Nature	Effect on atomic number
α particle	Cluster of 2 protons and 2 neutrons (1) / ⁴ ₂ He <u>nucleus</u>	Decrease by 2 (1)
β particle	Electron (1)	Increase by 1 (1)
γ radiation	Electromagnetic radiation of high energy	No effect

(Accept 'decrease' and 'increase' in 'atomic number' for 1 mark only)
[4]

Total [16]

PMT

8.	(a)	(i)	Increases CO ₂ levels / causes global warming Gas is a non renewable energy source / will run out	(1) (1)	[2]
		(QWC))The information is organised clearly and coherently using specialist vocabulary where appropriate	v,	[1]
		(ii)	Wind / hydro / biomass / solar / geothermal	(1)	
			Rotation of blades turns turbine / falling water turns combustion steam turns turbine / sunlight on photov produces electricity (1)	turbine voltaic c	e/ ell
			(Accept answers in terms of energy changes)		[2]
	(b)	(i)	$C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$		[1]
		(ii)	$\Delta H = (2 \text{ x} - 394) + (3 \text{ x} - 286) - (-278)$ $\Delta H = -1368 \text{ kJ mol}^{-1}$	(1) (1)	[2]
		(iii)	Energy for ethanol $= \frac{1368}{46} = 29.7 \text{ kJ g}^{-1}$	(1)	
			Energy for octane $= \frac{5512}{114} = 48.4 \text{ kJ g}^{-1}$	(1)	[2]

Ethanol is a renewable fuel (if obtained by fermentation) / ethanol is cheaper in countries with plentiful sugar cane growth / ethanol is more carbon neutral / ethanol burns more cleanly (iv)

[1]

Total [11]

9.	(<i>a</i>)	Volur	netric / graduated /	standard flask		[1]			
	<i>(b)</i>	23.10	23.95	23.20	23.15	[1]			
	(c)	Anom	alous result = 23.9	25 cm^3					
		Mean	$= 23.15 \text{ cm}^3$			[1]			
	(<i>d</i>)	(i)	Moles HCl =	$\frac{0.1 \times 23.15}{1000} = 2$.315×10 ⁻³	[1]			
		(ii)	Moles Na ₂ CO ₃ =	1.158×10 ⁻³		[1]			
		(iii)	Moles in original	solution $= 1.15$	58×10 ⁻²	[1]			
		(iv)	Mass $Na_2CO_3 = 1$	1.227 g		[1]			
		(v)	% $Na_2CO_3 = 59.9$	9%		[1]			
			(Consequential n	narking applies))				
	(e)	e.g. ft	nnel left in burette	e (1) / air in pipe	ette (1) /				
		not reading meniscus (1) / solution in flask not mixed thoroughly (1) /all of solid not used to make solution (1)							
		(Maxi	(Maximum 2 marks for sources of error)						
		If end-point overshot, too much acid would have been added (1),							
		so mo actual	les (mass) carbona moles (mass) pres	te calculated we ent (1)	ould have been me	ore than			

[4]

(QWC) Legibility of text; accuracy of	f spelling, punctuation a	nd grammar,
clarity of meaning	(1)	
Selection of a form and style	of writing appropriate to	o purpose and to
complexity of subject matter	(1)	[2]

Total [14]

Section B Total [70]