$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY (NEW) ASIAdvanced

CH1

Section A

1. (a) (i) Atomic number is the number of protons in the nucleus / in an element (e.g. 19 for potassium)
(ii) Isotopes of elements have the same number of protons but different number of neutrons (e.g. chlorine has two isotopes ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$) / same atomic number but different mass number
(b)

2. (a) (i) Measure (the volume of) hydrogen produced (using a gas syringe) /
(mass of) hydrogen lost at constant time intervals
(ii) Crush it into a powder / increase its surface area / heat it / stir it
(b) 2 g
3. $3 \mathrm{~g} / \mathrm{A}$
4. (a)
fraction of molecules with energy, E

(b) $\Delta H=(4 \times 412)+612+436-((6 \times 412)+348)$
$=\quad-124 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Section B

5.

(a)
(i) Correct plotting of 6 points (Allow $\pm 1 / 2$ square)
(ii) In He less shielding of outer electron (1) outweighs smaller nuclear charge (1) /
He has greater effective nuclear charge (1) /
He outer electron closer to nucleus (1)
(Accept any two points)
(iii) Ne has greater nuclear charge / greater number of protons (in same orbital)
(iv) N only has unpaired 2 p electrons, O has two unpaired and two paired 2 p electrons / $\mathrm{N} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$, $\mathrm{O} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$ (1), repulsion between the paired electrons makes it easier to remove one of the electrons / takes more energy to remove unpaired electron (1)
(b)
(i)
Pb
C
O

$\frac{77.5}{207}$	$\frac{4.50}{12}$	$\frac{18.0}{16}$
0.374	0.375	$1.125 \quad$ (1)
1	1	3

$$
\text { Formula }=\mathrm{PbCO}_{3}(1)
$$

(ii) I $\quad M_{\mathrm{r}} \mathrm{Pb}_{3} \mathrm{O}_{4}=(3 \times 207)+(4 \times 16)=685$

II Moles $\mathrm{PbO}=\frac{134}{223}=0.601$
Moles $\mathrm{Pb}_{3} \mathrm{O}_{4}=0.200$
(1)

Mass $\mathrm{Pb}_{3} \mathrm{O}_{4}=137 \mathrm{~g}$
(1)
or alternative

1338 g PbO gives $1370 \mathrm{~g} \mathrm{~Pb}_{3} \mathrm{O}_{4}$
1 g PbO gives $\frac{1370}{1388}$ g $\mathrm{Pb}_{3} \mathrm{O}_{4}$

134 g PbO gives $137(.2) \mathrm{g} \mathrm{Pb}_{3} \mathrm{O}_{4}$
Total [14]

6 (a) (i) It provides a new route $\quad \begin{aligned} & \text { of lower activation energy }\end{aligned}$
(1)
(1)
[2]
(ii) Heterogenous
(iii) I Lower temperatures could be used (1) (which would mean) increased yield (1) / less energy consumption (1) / lower pressure used (1) / equilibrium could be reached faster (1) (Accept any two points)

II More ammonia formed / equilibrium moves to right (1) since more (gas) molecules on l.h.s. (1) (Increases rate of reaction 1 mark)

III Equilibrium moves to right / more ammonia formed (1) since removing ammonia decreases its concentration in the mixture (1)
(Stops ammonia from returning to nitrogen and hydrogen 1 mark)
(iv) Near a port / on the coast for exporting products (1), good transport links for product (1), nearby workforce (1)
(Two valid reasons without one qualification 1 mark only) [2]
(b) (i) $\quad 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(ii) Ammonia accepts a proton (from the acid) / ammonia has a lone pair of electrons / ammonia neutralises the acid
(iii) $\% \mathrm{~N}=28 / 132 \times 100$ (1)

$$
=\quad 21.2 \%
$$

7. (a) (i) Only changes between energy levels allowed / electron falls from higher energy levels to lower energy levels (1)

Energy emitted related to frequency / $\mathrm{E}=\mathrm{hf} /$ the difference between any two energy levels are fixed / energy levels are quantised
(1)
[2]
(ii)

Labelling of any 3 horizontal lines
Transitions going to $\mathrm{n}=2$
Red line from $n=3$ to $n=2$
(If all lines go to $\mathrm{n}=1$, accept red line from $\mathrm{n}=2$ to $\mathrm{n}=1$)
(iii) Transition from $\mathrm{n}=1$ to $\mathrm{n}=\infty$
(b)
(i) $\quad A_{\mathrm{r}} \mathrm{H}=\frac{(1 \times 99.2)+(2 \times 0.8)}{100}$ $=1.008$
(ii) Some of the hydrogen molecules are split into atoms
(c) (i) Electron gun / source of electrons / heated filament
(ii) Electric field / charged plates / accelerator / collimator
(iii) To ensure a vacuum / prevents collisions between sample and air molecules
(d)

Type	Nature	Effect on atomic number
α particle	Cluster of 2 protons and 2 neutrons (1)/ $\mathbf{2}_{2}$ He $\underline{\text { nucleus }}$	Decrease by 2 (1)
β particle	Electron (1)	Increase by 1 (1)
γ radiation	Electromagnetic radiation of high energy	No effect

(Accept ‘decrease’ and 'increase’ in 'atomic number' for 1 mark only)
8. (a) (i) Increases CO_{2} levels / causes global warming
(1)

Gas is a non renewable energy source / will run out (1) [2]
(QWC) The information is organised clearly and coherently, using specialist vocabulary where appropriate
(ii) Wind / hydro / biomass / solar / geothermal

Rotation of blades turns turbine / falling water turns turbine / combustion steam turns turbine / sunlight on photovoltaic cell produces electricity
(Accept answers in terms of energy changes)
[2]
(b) (i) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
(ii) $\Delta H=(2 \mathrm{x}-394)+(3 \mathrm{x}-286)-(-278)$
$\Delta H=-1368 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) Energy for ethanol $=\frac{1368}{46} \quad=29.7 \mathrm{~kJ} \mathrm{~g}^{-1}$

Energy for octane $=\frac{5512}{114} \quad=48.4 \mathrm{~kJ} \mathrm{~g}^{-1}$
(1) [2]
(iv) Ethanol is a renewable fuel (if obtained by fermentation) / ethanol is cheaper in countries with plentiful sugar cane growth / ethanol is more carbon neutral / ethanol burns more cleanly
9. (a) Volumetric / graduated / standard flask
$\begin{array}{llll}\text { (b) } & 23.10 & 23.95 & 23.20\end{array}$
(c) Anomalous result $=23.95 \mathrm{~cm}^{3}$

Mean $=23.15 \mathrm{~cm}^{3}$
(d) (i) Moles $\mathrm{HCl}=\underline{0.1 \times 23.15}=2.315 \times 10^{-3}$

1000
(ii) Moles $\mathrm{Na}_{2} \mathrm{CO}_{3}=1.158 \times 10^{-3}$
(iii) Moles in original solution $=1.158 \times 10^{-2}$
(iv) Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=1.227 \mathrm{~g}$
(v) $\% \mathrm{Na}_{2} \mathrm{CO}_{3}=59.9 \%$ (Consequential marking applies)
(e) e.g. funnel left in burette (1) / air in pipette (1) / not reading meniscus (1) / solution in flask not mixed thoroughly (1) /all of solid not used to make solution (1)
(Maximum 2 marks for sources of error)
If end-point overshot, too much acid would have been added (1),
so moles (mass) carbonate calculated would have been more than actual moles (mass) present (1)
(QWC)Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning
Selection of a form and style of writing appropriate to purpose and to complexity of subject matter
(1)

